Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli.

نویسنده

  • A M Reiner
چکیده

d-Arabitol was observed to be toxic to many laboratory strains of Escherichia coli K-12, and xylitol was found to be toxic to an existing E. coli C mutant strain. Fructose-specific components of the phosphoenolpyruvate:sugar phosphotransferase system are required for xylitol toxicity. Selection for xylitol resistance results in Fru(-) strains blocked in fructose phosphotransferase. Introduction of the ptsF or ptsI mutation into a xylitol-sensitive strain eliminates sensitivity. [(14)C]fructose uptake experiments imply that the mutation to xylitol sensitivity, which is co-transducible with ara and leu, results in derepression of normally inducible fructose phosphotransferase. Wild-type strains also become xylitol sensitive if induced by (and then removed from) fructose. Xylitol toxicity is prevented by fructose in both wild-type and mutant strains. Circumstances causing xylitol, a new food additive, to become toxic to an otherwise insensitive wild-type organism have not been reported previously. The d-arabitol-sensitive laboratory strains are galactitol (dulcitol) utilizers, although most other strains are not. Selection for d-arabitol resistance results in Gat(-) strains blocked in a constitutive galactitol-specific component of the phosphotransferase system. A mutation causing d-arabitol sensitivity occurred many years ago in AB284, the parent of AB311, AB312, AB313, and many other strains. d-Arabitol sensitivity also occurs in sorbitol-constitutive strains and is shown, like the previous two instances of pentitol toxicities, to result from a constitutive phosphotransferase, which is blocked in mutants selected for resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and characterization of sorbitol dehydrogenase from apple callus tissue.

Sorbitol dehydrogenase (l-iditol:NAD(+) oxidoreductase, EC 1.1.1.14) has been detected and characterized from apple (Malus domestica cv. Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, xylitol, l-arabitol, ribitol, and l-threitol in the presence of NAD. NADP could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Other polyols that did not serve as substrat...

متن کامل

Characterization of New Polyol/H+ Symporters in Debaryomyces hansenii

Debaryomyces hansenii is a halotolerant yeast that produces and assimilates a wide variety of polyols. In this work we evaluate polyol transport in D. hansenii CBS 767, detecting the occurrence of polyol/H(+) (and sugar/H(+)) symporter activity, through the transient extracellular alkalinization of unbuffered starved cell suspensions. From the D. hansenii genome database, we selected nine ORFs ...

متن کامل

Chemotaxis toward sugars in Escherichia coli.

Using a quantitative assay for measuring chemotaxis, we tested a variety of sugars and sugar derivatives for their ability to attract Escherichia coli bacteria. The most effective attractants, i.e., those that have thresholds near 10(-5) M or below, are N-acetyl-d-glucosamine, 6-deoxy-d-glucose, d-fructose, d-fucose, 1-d-glycerol-beta-d-galactoside, galactitol, d-galactose, d-glucosamine, d-glu...

متن کامل

Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli.

Ribitol+ strains of Escherichia coli acquire the ability to utilize xylitol by mutating to constitutive production of the coordinately controlled ribitol catabolic enzymes ribitol dehydrogenase (RDH) and D-ribulokinase (DRK). Such strains concomitantly acquire toxicity to galacitol and L-arabitol, and to D-arabitol if they are unable to utilize it for growth. Strains selected for resistance to ...

متن کامل

Microbiological purification of L-arabitol from xylitol mother liquor.

As a rare sugar alcohol, L-arabitol can be used in food and can prevent extra fat deposits in the intestinal tract. Commercially, L-arabitol is prepared from pure L-arabinose by hydrogenation, which needs a high temperature and high pressure, leading to a high production cost for Larabitol. Therefore, this study describes a novel L-arabitol production method based on biological purification fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 132 1  شماره 

صفحات  -

تاریخ انتشار 1977